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1 (i) 

 

 

 

 

 (ii) 

 

Method to compare coefficients or complete the square 

Obtain a = 4 

Obtain b = − 6 

 

 

State minimum = − 6 or y = − 6 

State x = 4 

 

SR Accept (4, − 6) 

SR If differentiation is used to find x = 4 award B1 

M1 

A1 

A1 [3] 

 

 

B1 

B1 [2] 

2 

 

Correct and labelled tan curve with asymptotes clearly intended or shown. Scale required 

on x-axis 

Correct arc tan curve 

tan−1 (
2

π

) must be approx. 1 or asymptote shown. Scale required on y-axis 

 

 
State reflection in line y = x 

B1 

 

B1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1 [3] 

3 METHOD 1 

x < 2 seen 

2x – 1 < 3 AND – (2x – 1) < 3 seen 

Obtain −1 < x < 2 

 

METHOD 2 

(2x – 1)2 < 32 seen 

Expand and obtain a 3 term quadratic (x2 – x − 2 < 0) 

Obtain −1 < x < 2 

 

B1 

M1 

A1 [3] 

 

 

B1 

M1 

A1 

4 (i) 

 

 

 

 (ii) 

 

Attempt to move the graph sideways and up. 

Obtain fully correct figure moved 2 units to the left and 1 up. 

 

 

Attempt to scale the figure vertically and clearly reflect in x-axis. 

Obtain fully correct figure with y-coordinates halved and reflected in the  

x-axis. 

 

NB Scales are required on both axes 

M1 

A1 [2] 

 

 

M1 

A1 [2] 
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5 State 3 − i 

Attempt a complete method for determining p and q.  

 

Obtain p = − 6 

Obtain q = 10 

B1 

M1 

 

A1 

A1 [4] 

6 (i) 

 

 

 

 (ii) 

 

 

 

 

 

 

 

 

 (iii) 

 

 

Show 7 × 2 – 10 – 22 = 0 

OR solve x2 – 7x + 10 = 0 to obtain x = 2 at least  

 

 

Obtain x
x

y
27

d

d
−=  

Obtain y = 2 and 1
d

d
=

x

y
 at x = 3 

Attempt equation of straight line 

 

Obtain y = x – 1 

Substitute x = 1 and obtain y = 0 

 

Obtain area of triangle = 2 

Attempt integration 

Obtain 







−− 3

2

3

1
10

2

7
xx

x

 

Attempt to substitute limits of 2 and 3. 

Obtain 
6

7
 

Attempt subtraction from area of triangle 

Obtain 
6

5
 with no decimals seen 

B1 [1] 

 

 

 

B1 

 

B1 

 

M1 

 

A1 

A1 [5] 

 

B1 

M1 

 

A1 

 

M1 

A1 

M1 

 

A1 [7] 

7 

 

 

 

 

 

Obtain any equiv form of correct derivative 
3

2

x

−

– 0.018 

Attempt use of correct formula 

Use x0 = 2 and continue at least as far as x1 

 

State 2.47  

SR 2.47 may be awarded B1 for any method or no method seen 

B1 

 

M1 

dep M1 

 

A1 [4] 
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8 (i) 

 

 

 

 

 (ii) 

 

Attempt 
x

t

t

y

x

y

d

d

d

d

d

d
×=   

Obtain 
2e

5e

d

d

−

−

=
t

t

x

y
 

 

Equate their derivative to 3 and attempt to solve 

Obtain et = 0.5 

Attempt ln on both sides and use power law 

Obtain t = – ln 2 AG 

 

OR 

 

Substitute t = − ln 2 into 
2e

5e

d

d

−

−

=
t

t

x

y
 

Use power log law  to show or imply 
2e

5e

d

d

2

1

2

1

n1

n1

−

−

=

x

y
 

Obtain 

2
2

1

5
2

1

d

d

−

−

=

x

y
 

Obtain 3  

M1 

 
 

A1 [2] 

 

M1 

A1 

M1 

A1 [4] 

 

 

 

M1 

 

 

M1 

 

 

A1 

 

 

A1 

9 (i) 

 

 

 

 

 

 

 (ii) 

 

 

 

 

 (iii) 

Attempt to use an expression for r, e.g. 
x

x

x

x

x

536
or

6

56

2

+
=

+
=  

 

Obtain correctly x2 + 5x – 36 = 0 AG 

 

Obtain x = 4 or –9 

 

Obtain r = 
2

3
 

Obtain r = 
3

2−
 and only these 

State r = 
3

2
−  or imply this by considering only this value of r  

 

Attempt to solve ar2 = 6 or ar = − 9 

Obtain a = 13.5 

 

Use correct sum to infinity formula and obtain 8.1 

 

SR both r offered with no choice M1 only 

M1 

 
 

A1 

 

B1 [3] 

 

B1 

 

B1 [2] 

 

 

B1 

 

M1 

A1 

 

B1 [4] 
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10 (a)  

 

 

 

 

 

 

 

 

 (b) 

   

 

 

 

Attempt integration to obtain an integral in ln (f(x)) 

Substitute limits to obtain correctly 
2

1
 (1n9 – 1n5) 

Show clearly the use of at least one log law  

Obtain 1n 
5

3
 www AG 

Attempt integration by parts with u = x du = 1 and dv = (x − 2)0.5 and v = ( )2
3

2
3

2
−x  

Obtain ( ) ( )∫−− xxmxkx df2 2

3

 

Obtain ( ) ( )∫ −− xxmxk d2fg 2

3

 

Obtain ( ) ( )2
5

2

3

2
15

4
2

3

2
−−− xxx  + c 

 

OR 

 

Attempt reverse substitution with u = x – 2 du = dx and 

ux =− 2  

Obtain ( ) uuu d2
5.0∫ ±  

Obtain 2

3

2

5

muku +  

Obtain ( ) ( ) cxx +−+− 2

3

2

5

2
3

4
2

5

2
 

M1 

A1 

M1 

 

A1 [4] 

 
 

M1 

 

 

M1 

 

M1 

 

A1 [4] 

 

 

 

M1 

 

M1 

 

M1 

A1 
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11 (i) 

 

 

 

 (ii) 

 

 

 

 

 

 

 

 

 

 

 

 (iii) 

 

Attempt use of the form 
y

B

y

A

−

+

1
 and remove fractions 

Obtain A = 2 

Obtain B = 2 

 

Attempt to separate variables and use result from (i) 

 

Attempt integration of both sides  

Obtain 2ln y – 2ln |1− y| = x + C aef 

Attempt use of at least one log law correctly 

State or imply 
( )

C
1

n1
2

2

+=










−
x

y

y
 and obtain convincingly 

( )
x

Ae
y

y
=

−

2

2

1

 AG 

 

Substitute (0, 2) and obtain A = 4  

 

Select the correct root of – 2 and attempt to make y the subject 

 

i.e. 
( )

2e2
1

x

y

y
−=

−

 

Obtain 

1e2

e2

2

2

−

=
x

x

y  or equiv simplified form. 

M1 

A1 

A1 [3] 

 

M1 

 

M1 

A1 

M1 

 

 

 

 

A1 [5] 

 

 

B1 

 

M1 

 

 

 

 

 

A1 [3] 



Page 7 Mark Scheme Syllabus Paper 

 Pre-U – May/June 2014 9794 01 
 

© Cambridge International Examinations 2014 

12 (i) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (ii) 

 

 

Attempt to use tan 4x = tan 2(2x)  

Obtain tan 4x = 
( )x
x

2tan1

2tan2

2
−

 or 
( )x

xx

2tan1

2tan2tan

2
−

+
 

Attempt to substitute for tan 2x 

Obtain 

( )

2

2

2

tan1

tan2
1

tan1

tan22










−
−

−

x

x

x

x

 

 

Correctly form a single term in the denominator by removing the 1  

Obtain 
( )

xx

xx

42

2

tantan61

tan1tan4

+−

−
 AG.  

Stages in the argument must be consistent and clearly presented for A1. 

 

State or imply that the root gives tan 4x = 1 

 

Attempt to write the equation in the same structure as the identity 

( )
xx

xx

42

2

tantan61

tan1tan4

+−

−
  

Obtain p = 4  

Convincing and clear argument with all stages shown including the  

statement that 1
4

tan =






π
  

Evaluation using decimals 0/4 

M1 

 

A1 

 

M1* 

 

 

dep A1 

 

 

 

dep M1 

 

 

 

A1 [6] 

 

B1* 

 

 

 

M1 dep 

 

A1 dep 

 

B1 dep 

 [4] 

 


